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NASA TT F-10,177 

TI!E LAMINAR BOUNDARY TAYER I N  A RADTATINGABSORBIXG 

GAS NEAR A FLAT PLATE 

V. P . Zamurayev (Novosibirsk) 

The steady-state problem of t h e  laminar flow of a radi-  
ating-absorbing gas i n  the boundary l a y e r  near a f l a t  p l a t e  
has been considered i n  several papers [l-61. However, due t o  
t h e  assumptions made by t h e i r  authors as regards t h e  na tu re  
of t h e  r ad ia t ion ,  t h e  a p p l i c a b i l i t y  of t h e  so lu t ions  obtain- 
ed the re in  is limited.  
methods they employed i n  specifying t h e  r a d i a t i o n  i s  more- 
over uncertain.  

The degree of exactness of t h e  

I n  t h e  present paper we s h a l l  be concerned with t h e  
laminar boundary l a y e r  near a p l a t e .  
a more exact descr ip t ion  of r ad ia t ion  t r ans fe r .  H e a t  t rans- 
f e r  takes  place by ordinary heat conduction and r ad ia t ion .  
A number of simplifying assumptions already used i n  t h e  afore- 
mentioned papers are made about t he  rad ia t ion .  
p ly  t h e  hypothesis of l o c a l  thermodynamic equilibrium accord- 
i ng  t o  which the  r ad ia t ing  power and c o e f f i c i e n t  of absorption 
are r e l a t e d  by Kirchhoff's law. 
gray. 
comparison with t h e  r ad ia t ion  f l u x  across  the platei 
assumption is  v a l i d  provided the temperature v a r i a t i o n  along 
t h e  p l a t e  over t he  length of t he  r ad ia t ion  path i s  s m a l l .  
The e f f e c t  of but s l i g h t  temperature v a r i a t i o n  along t h e  p l a t e  
i s  t o  render t h e  r ad ia t ion  f lux  across  the  p l a t e  determinable 
by t h e  temperature p r o f i l e  in t h e  given sec t ion .  
i s  assumed t o  be absolu te ly  black. 
of t h e  medium may be temperature dependent. 

W e  intend t o  use 

Thus, w e  ap- 

The medium i s  assumed t o  be 
The r ad ia t ion  f l u x  along t h e  p l a t e  is  neglected in 

Such G 

The w a l l  
The physical p rope r t i e s  

The asymptotic behavior of hea t  t r ans fe r  f a r  away from 
A d i f fe rence  method of t h e  t i p  of t h e  p l a t e  is considered. 

solving a system of p a r t i a l  d i f f e r e n t i a l  equations with a com- 
plex i n t e g r o d i f f e r e n t i a l  energy equation is used t o  so lve  t h e  
problem over t h e  e n t i r e  length of t h e  p l a t e .  
f ea tu re s ,  t h i s  method i s  similar t o  t h e  d i f f e rence  method used 

I n  i t s  bas i c  

t o  so lve  boundary 
[ 7-91. The paper 

l aye r  equations without regard 
concludes with a discussion of 

f o r  r ad ia t ion  
t h e  r e s u l t s  

_- 
/Numbers i n  t h e  margin ind ica t e  pagination of t h e  o r i g i n a l  fore ign  text. 
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I .  

of computing one of t h e  cases considered i n  [l]. The 
character of heat t r a n s f e r  and the  p o s s i b i l i t y  of specify- 
i ng  r a d i a t i o n  i n  t h e  r ad ian t  hea t  conduction approximation 
are investigated.  

1. W e  consider t h e  steady-state laminar boundary l aye r  near a f l a t  p l a t e .  

In the  va r i ab le s  x ( the  longi tudina l  coordinate) and y (the t ransverse  
coordinate) t h e  problem posed is  described by the system of equations 

where u and v are the  components of t h e  ve loc i ty  along and across  t h e  p l a t e ,  T 
t h e  temperature, p t h e  dens i ty ,  p t h e  c o e f f i c i e n t  of v i s c o s i t y ,  c t h e  s p e c i f i c  

heat capac i ty  a t  constant pressure,  and q t o t a l  hea t  f l u x  along y, equal t o  t h e  
sum of f luxes  due t o  ordinary heat conduction ~m and t o  r a d i a t i o n  q 

P 

r' 

Q =9m+qr  

The heat f l u x  qm i s  defined i n  the usua l  way, 

where X is  t h e  thermal conductivity coef f ic ien t .  

The heat f l u x  due t o  r a d i a t i o n  qr can be found by using i t s  expression 

obtained by in t eg ra t ing  over t h e  spectrum and s o l i d  angle t h e  i n t e n s i t y  of rad i -  
a t i o n  i n  the  form of t h e  formal so lu t ion  of t he  t r a n s f e r  equation mul t ip l ied  by 
t h e  cos ine  of t h e  angle between t h e  d i r ec t ion  of r a d i a t i o n  and t h e  y-axis, with 
due allowance f o r  t h e  assumption of grayness of the medium and no regard f o r  
t h e  temperature v a r i a t i o n  along x over several r a d i a t i o n  path lengths,  

/74 

Here a is  the  Stefan-Boltzmann constant, E (T) t he  i n t e g r a l  exponential 

func t ion ,  and T t h e  o p t i c a l  thickness of t h e  gas  l a y e r  given by the  equation 
( I  i s  t h e  r a d i a t i o n  pa th  length) 

n 
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The subscr ipt  0 denotes t h e  values of t he  parameters a t  the  w a l l .  The 
quan t i t i e s  p,  p, c A , i  are generally functions of temperature. 

P' 
Instead of t h e  equation of discont inui ty  we can consider t he  two equiva- 

l e n t  equations (J, is the  stream function) 

The so lu t ion  of system (1.1)-(1.5) w i l l  be sought in the  region x > 0, y 
>_ 0 under the  boundary conditions 

u = v = 0, T = To f o r  y = 0; u = urn, T = Tm f o r  y = m(1 .7 )  

2 .  The problem j u s t  formulated is solved numerically. The t i p  31 = y = 0 
is  a spec ia l  point  ( i n  t h e  neighborhood of t h i s  point  t he  f r i c t i o n  stress and 
heat  f l u x  due t o  ordinary heat  conduction behave as l/&), so t h a t  in order t o  
der ive a s ing le  algorithm f o r  numerical computation va l id  in the  e n t i r e  region 
we  introduce t h e  new independent var iables  - 

and replace the  stream funct ion J, (x, y) by t h e  new funct ion f (C ,n ) ,  

As a r e s u l t ,  a l l  of the der ivat ives  appearing i n  the conservation equations 
become f i n i t e ,  and the  funct ions f ,  u, and T which w e  are seeking i n  t h e  new 
va r i ab le s ,  vary weakly along the  p l a t e  so t h a t  computation can be e f f ec t ed  with 
a l a r g e r  i n t e r v a l  along 5 without loss of accuracy. ~ 

The boundary conditions for y = 03 must be considered a t  some f i n i t e  dis-  
tance from the  p l a t e  where the  functions u and T begin t o  d i f f e r  from t h e i r  
l imi t ing  values urn and Tm by an amount not  exceeding t h e  d i f fe rence  scheme 

e r r o r .  
and t h e  so lu t ion  may be sought in  the standard region 5 1 0, 0 5 n I nrn. 

I n  t h e  new var iab les  the  thickness of t h e  boundary layer  v a r i e s  weakly 

L e t  us  introduce t h e  dimensionless quan t i t i e s  

3 



where the physical parameters accompanied by the subscript 1 signify their 
values at the temperature TI. 

in terms of dimensionless quantities may be written as 

System (1.1)-(1.6) with boundary conditions (1.7) 

- I75 

The boundary conditions are 

1 -  

f = 3' = fJi T' = en for ri = 0, 

where P1 is the Prandtl number, 

U' = 1, T' = em for n = nm 

(2.10) 

The expression for @ was obtained allowing for the fact that T' = ea, for 

rl 2 rim. The heat fluxes can be found from the formulas 

I qm' = -- 2vi , , a r  
PI p? atl 

(2.11) 
I ,  

$ T 

q,' = 20,1B3 (r) - 2e",E, (roo'- r )  + 2 s T"E, (r  -' .t) dt - I 
I u 

T a l  i 
,i (2.12) - 2 5 T W ,  ( t  - r) dt 

T 

3 .  From equation (2.8) we see that with small values of 5 the boundary 
layer is optically transparent and that the smaller the value of E the longer 
it remains transparent. 
is the product of 5 by the bounded function 0 ; with small 5 it is small in 
comparison with the other terms of the equation. 

The term related to radiation in energy equation (2.6) 

Hence, the effect of radiation 
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is  s m a l l .  As 5 * 0 it  disappears en t i r e ly .  The temperature p r o f i l e  tends t o  
a se l f - s imi l a r  p r o f i l e  i n  t h e  absence of rad ia t ion .  However, t he  s i n g u l a r i t y  
at  5 = 0 never vanishes e n t i r e l y .  Being bounded, t h e  func t ion  Q has unbounded 

de r iva t ives  with respec t  t o  5 .  
In 5. 
increases  as AT ( fo r  small E ) .  

The f i r s t  of i t s  de r iva t ives  behaves as E-’* 
This is  due t o  the  f a c t  t h a t  the  o p t i c a l  thickness of t h e  boundary l a y e r  

As a r e s u l t ,  t h e  func t ion  Q varies very abrupt- 
l Y  * 

4 .  In t eg ra t ing  by p a r t s  in the  r igh t  s i d e  of equation (1.4) and applying 
(1.5), w e  ob ta in  an expression f o r  q in dimensionless form, r 

I f  t h e  quant i ty  Jx * 0, then t h e  integrands i n  (4.1) tend t o  zero - / 76 

everywhere as 
neighborhood of t h e  poin t  t = a tending t o  zero, where they are f i n i t e .  

I a - t exp ( - Az I a - t I) with exception of t h e  
As a 

- r e s u l t ,  t h e  corresponding terms are of t he  order  ( ~ 6 ) ’ ~ .  Therefore, w i t h d z  - 

>> a-i t h e  expression 

may be used t o  approximate qr’ instead of (2.12). 

Thus, with l a r g e  va lues  € 6  t h e  r ad ia t ion  f l u x  outs ide  t h e  w a l l  i s  obtained 
t o  Within t h e  approximation of radiant hea t  conduction. 

The s i t u a t i o n  near t h e  w a l l  i n  a l aye r  of thickness measuring seve ra l  
r a d i a t i o n  pa th  lengths  is  somewhat d i f f x e n t  ( t he  thickness of such a l a y e r  i n  
t h e  va r i ab le s  TI, 5 tends t o  zero as 1 / 4 ~ 5 ) .  Since L is t h e  c h a r a c t e r i s t i c  
dimension of t h e  problem as 1 / L  * 0 (so t h a t  1 G  + 0) ,  w e  ob ta in  the  follow- 
i n g  expression f o r  t h e  r ad ia t ion  f lux  i n  t h i s  layer :  

3 This expression d i f f e r s  from (4.2) by t h e  f a c t o r  fl - 2 E4(~)], which v a r i e s  

5 



from 0.5 a t  t h e  w a l l  t o  1 i n  t h e  gas stream ( fo r  T = 4 i ts  devia t ion  from uni ty  
i s  less than 0.4%). The r a t i o  of heat f luxes is  therefore  given by t h e  expres- 
s i o n  

Thus, with small 1 / L  near a w a l l  i n  a gas l aye r  of a thickness measuring 
several r a d i a t i o n  path lengths  the re  occurs a r e d i s t r i b u t i o n  of t h e  hea t  trans- 
f e r r e d  by r a d i a t i o n  and ordinary hea t  conduction in t h e  d inec t ion  of increasing 
molecular heat f lux ,  and a corresponding reduction of t h e  r a d i a t i o n  f l u x  ( t h e  
t o t a l  hea t  f l u x  remains almost constant) .  This takes  p lace  as a r e s u l t  of a 
more abrupt temperature drop toward the  w a l l .  The relative thickness of t h i s  
l aye r  is small, however, so t h a t  t h e  cor rec t  t o t a l  hea t  f l u x  can be obtained 
by considering r ad ia t ion  i n  t h e  rad ian t  hea t  conduction approximation. 
r a d i a t i o n  component of t h e  heat f l u x  w i l l  be exaggerated a t  least two-fold as 
t h e  parameter 1 / L  goes from zero t o  i n f i n i t y .  
a n t  heat conduction approximation is a t  least p a r t l y  removed by introducing a 
t h i n  l a y e r  next t o  t h e  w a l l  where t h e  coe f f i c i en t  i n  the  expression f o r  the  ra- 
d i a t i o n  heat f l u x  is  one ha l f  of t h a t  i n  the  remaining region. 

The 

In [l] t h i s  drawback of t h e  radi-  

5. System (2 .4) - (2 .8)  with boundary conditions (2.9) w i l l  be  solved by 
t h e  method of f i n i t e  d i f fe rences .  

The flow region 5 2 0, 0 I n 5 qm = const is  broken down i n t o  character-  

i s t i c  s t r i p s  of w i d t h  h. 
func t ion  f (f = f ,  u ' ,  T ' )  on the  l e f t  (i - i j - th  ad r i g h t  i - th  boundaries 

P P  
of t h e  s t r i p  

W e  consider t h e  arithmetic m e a n s  of the  required 

where t h e  subscr ip t  i m e a n s  that the  function is  taken f o r  an 5 equal t o  5 
i h  ( i  = 0, 1, 2 ,.... ). 

= 
i 

** 

These mean values d i f f e r  from the exact values on the  mid-line of t h e  s t r i p  

by an amount on t h e  order of h2 

System (2 .4) - (2 .6)  with boundary conditions (2 .9)  is wr i t t en  ou t  on the  
mid-line of t h e c h a r a c t e r i s t i c s t r i p ;  t h e  exact values are replaced by t h e  mean 
va lues  f , and t h e  de r iva t ives  w i t h  respec t  t o  5 by t h e  d i f f e rence  analog 

0 

P 

I n  order t o  avoid i t e r a t i o n ,  which increases  computer time considerably i f  
r a d i a t i o n  is present,  and a l s o  t o  prevent an increase  i n  the  system approximation 

6 



e r r o r ,  t he  quant i ty  @ describing the  rad ia t ion ,  as w e l l  as t h e  q u a n t i t i e s  p ' p ' ,  
p ' h ' ,  c ' and t h e  ve loc i ty  u' i n  (2 .4 )  - each of t hese  q u a n t i t i e s  is replaced 

P 

by a l i n e a r  combination of i t s  values on t h e  boundaries of the preceding - /77 

s t r i p ,  s o  t h a t  t h e  system approximation e r r o r  remains on t h e  order of h2, 

-. 
= (1 + '/ab) ( 5 - 3 )  

. -_ 

where hl is t h e  preceding interval, and h, is  t h e  new in t e rva l .  

A s  a r e s u l t ,  t he  system of l i n e a r  p a r t i a l  d i f f e r e n t i a l  equations (2.4)- 
(2.6) i s  reduced t o  a system of l i n e a r  ordinary d i f f e r e n t i a l  equations 

The boundary conditions are 

This system i s  solved in t he  following sequence of s teps .  F i r s t ,  t h e  
function f 0 ( d  
f o r  u0(n). 

i s  found from equation (5 .4 ) .  Next, equation (5 .5 )  is  solved 
Fina l ly ,  t h e  function To(n) i s  found from equation (5 .6 ) .  

Once system (5 .4) - (5 .6)  has been solved, t h e  a lgebra ic  r e l a t i o n s  f = 
P i  

0 implied by (5 .1)  are used t o  f i n d  t h e  values of t h e  requi red  func- f p , i - l  2f - 
P 

t i o n s  f ,  u t ,  and T' f o r  5 = Si = i h  t o  within an e r r o r  on the  order of h2. 

To so lve  t h e  l i n e a r  system of ordinary d i f f e r e n t i a l  equations (5 .4) - (5 .6)  
t h e  flow region i n  the  plane 5,rl i s  broken down i n t o  n hor izonta l  s t r i p s  of 
width A = nm/n, and each equation of (5.4)-(5.6) i s  approximated by a d i f f e rence  

equation of second-order exactness. The values of t h e  function fo(n) f o r  TI = j h  
are then  found from t h e  formula 

7 



Instead of equations (5.5) and (5.6) w e  make use of t h e  corresponding 
d i f f e rence  equations 

Each of t h e  above is  a second-order equation with known values of t h e  func- 
They are solved by t h e  sweep method. t i o n s  sought a t  both ends of t h e  in t e rva l .  

where 

fFi&j L- (Tu4 - 'FijS S, U 'FW - T i j  1) (p'[')sk . .  
4- 

The o p t i c a l  thickness T i s  computed from the  d i f f e rence  analog of equa- i j  t i o n  ( 2 . 8 ) ,  

In  order t o  begin computation it i s  necessary t o  know t h e  ve loc i ty  and 
I n  temperature p r o f i l e s  i n  t h e  i n i t i a l  ( 6  = 0) and f i r s t  ( 6  = h) sec t ions .  

t hese  sec t ions  the  so lu t ion  is  sought by t h e  successive approximation method. 

The r e s u l t s  of ca lcu la t ions  are given f o r  t he  case ea, = 1, 00 = 0.1, 

E = 0.2, P1 = 1, 

6 .  

= 0. The physical p roper t ies  i n  t h i s  case w e r e  set constant 

8 



-- t h e  q u a n t i t i e s  p ' p ' ,  PIA', c ', 61' were equated t o  uni ty .  
P 

d i t i o n s  correspond exac t ly  t o  one of t h e  v a r i a n t s  considered i n  [l]. 

A l l  of these  con- 

I Figure 1. 

The problem w a s  computed with an  i n t e r v a l  v a r i a b l e  along 5. The accuracy 
w a s  checked by repeated computation with o ther  i n t e r v a l s  both along 5 and along 
TI. The in i t i a l  computation w a s  car r ied  out f o r  t h e  following values of t h e  in- 
terval along 5: 

- 
5, = 0.002 f o r  0 6 5 5 0.008 

h = 0.004 f o r  0.008 5 5 5 0.02 

h = 0.008 f o r  0.02 5 5 F 0.06 

h = 0.02 f o r  0.06 5 5 0.3 

h = 0.1 f o r  0.3 5 5 5 5.1 

The i n t e r v a l  along TI i n  t h i s  case w a s  0.4, and t h e  value of TI on t h e  outer  
boundary was  16. Computation on a computer required 5 minutes. 

Repeated computation w a s  car r ied  out  up t o  5 = 3.1 f o r  i n t e r v a l s  ha l f  as 
g r e a t  both along 5 and along TI. The value of 

t o  13 and then increased t o  16. 

up t o  5 = 0.5 w a s  set equal 

The maximum d i f f e rence  between t h e  f i r s t  and second computed values of t h e  
temperature w a s  0.3%; t h e  corresponding d i f fe rence  i n  the  values of heat f luxes  
t o  t h e  w a l l  w a s  0.7% ( fo r  6 = 3.1). 
high as several percent. 

The d i f f e rence  i n  the values of @ w a s  as 

9 



Figure 2. 

The r e s u l t s  of computation a r e  p lo t ted  i n  t h e  f igures .  The broken curves 
are taken from [l]. 

Figure 1 shows t h e  temperature p r o f i l e s  with respect t o  the  v a r i a b l e  TI f o r  
var ious  values of 5. With increasing 5 t he  temperature p r o f i l e  is deformed 
from a se l f - s imi la r  p r o f i l e  without r ad ia t ion  i n t o  one which corresponds t o  the  
consideration of t he  r ad ia t ion  i n  t h e  approximation of nonlinear ( rad ian t )  hea t  
conduction. This deformation proceeds i n  such a way t h a t  t he  hot gas cools i n  
the  presence of r ad ia t ion  while t he  gas near t he  w a l l  hea t s  up. 
level t h i s  means t h a t  t h e  hot gas cools more rap id ly  and the  gas near t h e  w a l l  

ed). 
of molecular hea t  conduction, but by r ad ia t ion  as w e l l ,  and t h a t  t h e  cold gas /79 

on TI of the quzztity 0 proportional to - 3qr/arl i s  shown f o r  various values of 6 ) .  

of t h e  temperature which d i f f e r s  from t h e  l imi t ing  value by 1%. With s m a l l  5 
one observes a very abrupt thickening of t h e  boundary layer .  
thickness of t h e  boundary l aye r  w i t h  respec t  t o  t h e  va r i ab le  TI remains almost 
cons tan t  and c lose  t o  i t s  l i m i t i n g  value ( fo r  5 + a). 

O n  t h e  physical 

I cools more slowly ( i n  comparison with t h e  case where r ad ia t ion  i s  not consider- 

__ near t h e  w a l l  absorbs more than it rad ia t e s  ( see  Fig. 2 where t h e  dependence 

The reason f o r  t h i s  i s  t h a t  the  hot gas surrenders heat not only by way 

Figure 3 shows the  thickness of t h e  boundary l aye r  T-I* computed from a vaiue 

Thereafter t h e  

! 

Figure 3 .  Figure 4 .  

Under t h e  spec i f i ed  conditions the  deformation of the  temperature p r o f i l e  
w i th  s m a l l  values of 5 proceeds abruptly due t o  t h e  rap id  increase  i n  t h e  opt i -  
cal th ickness  of t he  boundary layer  (Fig. 3 ) ,  terminating sooner i n  t h e  i n t e r i o r  

10  



of the  flow. 
conduction f o r  t h e  r ad ia t ion  f i r s t  becomes acceptable i n  t h e  h o t t e s t  portion of 
t h e  boundary layer .  
s m a l l  circles i d e n t i f y  the  r ad ia t ion  heat f luxes  computed i n  t h e  nonlinear heat 
conduction approximation on the  b a s i s  of t h e  non-selfsimilar temperature pro- 
f i l e  f o r  5 = 3.1. 

This lat ter f a c t  means t h a t  t he  approximation of nonlinear heat 

The same conclusion may be drawn from Fig. 4 ,  where the  

P 

1 
\ 

0 I 2 3 y .v. B 

Figure 5. Figure 6 .  

The region where the  temperature p r o f i l e  i s  near ly  l i n e a r  con t r ac t s  with 
increas ing  5 i n  t h e  presence of radiation. This may be seen immediately from 
Fig. 1 as w e l l  as by considering Figs. 4 and 5 which show t h e  f luxes  of hea t  

Q = q/0Tm4 due t o  r a d i a t i o n  q*, ordinary heat w=ductlon a_ , and t h e  t o t a l  q 

as a func t ion  of T-I f o r  5 equal t o  0.02 and 3.1. The molecular hea t  f l u x  near 
t h e  w a l l  diminishes more slowly f o r  small values of 5 and more r ap id ly  f o r  
l a r g e  values of 5. Since the  hea t  f l ux  due t o  ordinary heat conduction is pro- 
po r t iona l  t o  the  s lope  of t he  temperature p r o f i l e ,  t h e  p r o f i l e  curvature in- 
c reases  with increas ing  5. 

0 

The rad ia t ion  f l u x  varies weakly with respec t  t o  boundary l aye r  thickness 
f o r  s m a l l  values of 5 (Fig. 5) ,  s ince  t h e  boundary l aye r  is  s t i l l  o p t i c a l l y  
t ransparent  (Fig. 3 ) .  But with 5 = 0.02 the re  is  already a c l e a r l y  d is t inguish-  
a b l e  r a d i a t i o n  f l u x  maximum due t o  the f a c t  t h a t  heat i s  o r i g i n a l l y  t r ans fe r r ed  
by r ad ia t ion ,  and t h a t  it i s  only near t h e  w a l l  t h a t  r e d i s t r i b u t i o n  occurs wi th  
hea t  being t r ans fe r r ed  by molecular heat conduction while t h e  t o t a l  heat f l u x  
remains almost constant.  This e f f e c t  is more marked with large 5. This is  
clear from Fig. 6 ,  where we see the  proportion of t he  r a d i a t i o n  f l u x  as a func- 
t i o n  of T-I f o r  var ious  5. Within a r e l a t i v e l y  broad region of t h e  boundary 
l a y e r  t he  proportion of t h e  rad ia t ion  f l u x  increases  with 5, r i s i n g  a t  an es- 
p e c i a l l y  high rate f o r  smaller values of 5 .  This growth i n  the  r ad ia t ion  con- 
t r i b u t i o n  t o  heat t r a n s f e r  is due t o  t he  f a c t  t h a t  t h e  temperature p r o f i l e  i n  
t h i s  region becomes s teeper .  
s teepness  of t h e  p r o f i l e  increases and the  proportion of rad ia ted  heat drops. 
(For s m a l l  5 t he  relative contribution of t he  r a d i a t i o n  f lux  increases  near t he  
w a l l  as w e l l  due t o  t h e  rap id  decline of the  molecular f l ux ) .  

/80 

The s i t u a t i o n  is reversed near t he  w a l l :  t h e  
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Figure 7. 

Figure 7 shows t h e  hea t  f l u x  t o  t h e  w a l l  due t o  r ad ia t ion ,  t he  heat f l u x  
due t o  ordinary heat conduction, as w e l l  as t h e  t o t a l  f lux .  
t o t a l  hea t  f luxes  with consideration of r a d i a t i o n  i n  t h e  nonlinear heat conduc- 
t i o n  approximation (from [ l ] ) .  The d i f fe rence  under t h e  conditions i n  question 
is  somewhat i n  excess of 10%. The d i f fe rence  i n  the  r a d i a t i o n  component of t h e  
heat f l u x  i s  g rea t e r  ( f o r  5 = 3.1, they d i f f e r  by a f a c t o r  of 40 under t h e  
spec i f i ed  conditions).  

It a l s o  shows t h e  

I n  conclusion the  author should l i k e  t o  thank A.T. Onufriyev f o r  h i s  u se fu l  
d i scuss ion  of t he  material here  presented. 
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